A IBM anunciou na segunda-feira, 4, um novo processador de 1.000 qubits, avanço que representa um marco inédito para a computação quântica. Ainda assim, a área ainda está longe de apresentar viabilidade comercial, já que equipamentos do tipo ainda apresentam uma margem de erro significante.
Conforme revelou a companhia, o processador Condor tem 1.121 qubits funcionais, primeiro do mundo com esse número. Qubit é a menor unidade de processamento de máquinas desse tipo, assim como o bit é a menor unidade de processamento de computadores clássicos – a diferença é que na computação clássica expressa apenas dois estados: 0 ou 1. Já na computação quântica, o qubit pode expressar os infinitos estados entre 0 e 1 ao mesmo tempo, o que, em tese, garante poder computacional gigantesco.
O novo chip da IBM demonstra o avanço da empresa na área: em 2021, foi apresentado um chip de 127 qubits e, em 2022, foi apresentado um chip com 433 qubits. Ambos foram considerados um marco para a área na época.
Desenvolver o chip de mil qubits era uma das metas da IBM para este ano, conforme calendário proposto pela própria empresa em 2020. Em agosto daquele ano, a empresa havia revelado um processador de 65 qubits, também um marco para a firma americana à época — o que mostra o quanto essa área avançou em três anos.
“Com desempenho comparável ao do nosso Osprey anterior de 433 qubits, ele serve como um marco de inovação, resolvendo problemas de escala e informando futuros projetos de hardware”, diz a IBM em nota no próprio site para anunciar o feito.
Em 2019, o Google havia atingido a “supremacia quântica”: um dos computadores quânticos da empresa realizou uma operação matemática impossível de ser feita por uma máquina clássica (que opera em sistema numérico binário, de 0 e 1). Com a computação quântica, cujos bits quânticos (qubits) podem assumir estados entre 0 e 1 (chamado de superposição e que aumenta a quantidade de informação processada num computador), a máquina do Google foi capaz de solucionar em 3 minutos e 20 segundos uma operação matemática que demoraria 10 mil anos para ser solucionada na forma máquina tradicional.
À época, a IBM contestou os resultados do Google, dizendo ter chegado a um modelo que solucionaria em dois dias e meio o problema em seu computador clássico Summit. A crítica principal é a de que o modelo usado pelo Google para estimar o cálculo de 10 mil anos para a solução do problema numa máquina clássica é exagerado.
Também nesta segunda-feira, a IBM também revelou um novo processador, chamado Heron, de 133 qubits. A novidade é que esse chip tem uma taxa de erro muito menor do que os antecessores, estabelecendo um novo recorde para a área.
Agora, com os novos processadores, a IBM reforça que deve ter um computador quântico funcional até o fim desta década, seguindo o cronograma proposto pela própria empresa em 2020.
Computação quântica em xeque
Hoje, além de Google e IBM, o setor é disputado por Amazon e Microsoft, que também tentam desenvolver processadores para viabilizar a computação quântica. A área, porém, vem recebendo menos investimentos, já que o mercado e investidores têm questionado a viabilidade desse tipo de tecnologia.
O principal desafio da área é contornar a alta instabilidade dos qubits, o que causa erros e inviabiliza soluções de grandes problemas. Os processadores quânticos atuais apresentam taxas de erro entre 1 em 100 e 1 em 10 mil. O Google estima que para ter uma máquina funcional as taxas de erro precisam ser entre 1 em 1 milhão e 1 em 1 bilhão.
Pesquisadores afirmam que as técnicas de correção desses erros incluem a criação de qubits lógicos, que consistem em diversos qubits físicos comprimidos em uma única unidade de processamento, o que permite dissolver os erros no sistema. Na nova unidade, cada qubit lógico equivale a 1.000 qubits físicos. No entanto, para que uma máquina consiga processar operações completas, são necessários milhões de qubits físicos, algo inviável no momento.
Costuma-se dizer que, mais do que o número de qubits de um processador, o importante é a qualidade desses bits quânticos, com fim de evitar instabilidades e erros nas operações. Por isso, o marco de mil qubits é importante, mas não significa exatamente um avanço na aplicabilidade da computação quântica, já que ainda há um longo caminho até máquinas com milhões de qubits.